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1. Introduction and summary

Non-critical superstrings in various dimensions IRd−1,1 were constructed in [1] as a theory

using in addition to the flat space coordinates, the N = 2 Liouville theory on the world-

sheet. Since then, the type II theories have been studied in detail from various points of

view [2 – 4], [5]. Using the supersymmetric version of the FZZ duality [6 – 8] a geometric un-

derstanding has been gained as the superstrings propagating on the cigar – the supercoset

SL2(IR)/U(1) [9] – tensored with flat d-dimensional spacetime.

Recently, heterotic strings in two dimensions with a linear dilaton profile were studied

in [10 – 12]. Previous work on heterotic strings in backgrounds with non-trivial dilaton

profiles has been done in1 [13 – 17] . The purpose of this paper is to construct from the

worldsheet non-critical heterotic superstrings propagating in various spacetime dimensions

which interpolate – as in the type II case – between ten and two dimensions2.

The theories we construct can be thought of as heterotic strings propagating on the

cigar times flat spacetime. An equivalent description following [2] is heterotic strings in the

near-horizon limit of wrapped NS5-branes, or equivalently the theory describing the modes

of the heterotic theory near the singularities on Calabi-Yau manifolds, in a certain double

scaling limit zooming in on the singularity, simultaneously taking the string coupling to

zero.

The singular CY-manifolds which are tensored with IRd−1,1 in this limit are described

by the non-compact manifold
∑n

i=1 z2
i = µ, n = (12 − d)/2, zi ∈C. Equivalently, we have

heterotic string theory in the near-horizon background of NS5-branes with d flat spacetime

directions and 6 − d directions wrapped on
∑n

i=3 z2
i = µ. In this way, the various theories

interpolate between ten dimensions all the way down to two dimensions, where they connect

to well-understood theories [18] with asymptotically linear dilaton backgrounds3. Zooming

in on the singularities (or equivalently, “wrapping” the NS5-branes on non-compact curves)

effectively freezes some of the transverse perturbative degrees of freedom and induces a

linear dilaton profile.

Ten-dimensional heterotic theories in the background of NS5-branes have been well-

studied [19, 20]. In addition to a non-trivial gravitational background, the presence of the

heterotic 5-brane implies a non-trivial instanton background of the corresponding gauge

theory in the transverse dimensions. As in the case of many parallel heterotic 5–branes in

ten dimensions [20] , the double scaling limit involves taking the size of the instanton to

zero along with the string coupling, keeping a certain ratio of powers of these two quantities

fixed4.

1In particular, the type of models discussed in detail in this paper were anticipated in [13] .
2We shall focus on the features special to the heterotic models in the simplest class of non-critical

superstrings – they can be generalized to other theories involving e.g. minimal models, corresponding to

5-branes wrapping other singular CY’s as in [2] .
3The theory with µ = 0 is singular, and corresponds on the worldsheet to a pure linear dilaton theory

with a strong coupling singularity.
4The singular linear dilaton case corresponds to the case where the instanton is really of zero size, even

in the near horizon limit.
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Theory d = 6 d = 4 d = 2 d = 0

Supersymmetry N = (1, 0) N = 1 N = (1, 0) N = 1

R symmetry O(3)R U(1)R (U(1) × ZZ2)R U(1)R
KK gauge field SU(2) U(1) U(1) −−
E8 × E8 line E8 × E8 E8 × E7 E8 × E6 E8 × SO(10)

SO(32) line SO(32) SO(28) × SU(2) SO(26) × U(1) SO(24) × U(1)

Table 1: Symmetries and Allowed gauge groups in the linear dilaton theories.

1.1 Summary of the various theories in the singular linear dilaton background

We shall first construct supersymmetric heterotic theories on spacetimes of the form

IRd−1,1 ×N = 2 linear dilaton. The supersymmetric right moving fields on the worldsheet

are the same as the non-critical type II superstrings, and the left moving fields consist

of the leftmoving part of the non-compact bosons, as well as a lattice of the appropriate

dimension. These fields should combine to produce a modular invariant theory on the

worldsheet. We find that there are two lines of heterotic theories, one descending from the

E8 ×E8 theory in ten dimensions, and the other descending from the SO(32) theory in ten

dimensions. In accord with the above discussion of zooming in on singular backgrounds,

we find that some of the gauge currents of the ten-dimensional theories also get frozen in

the heterotic theories, and the gauge groups arising in the various theories are subgroups

of the above two of lower rank.

For the convenience of the reader, the results regarding the gauge groups5 and global

symmetries of the various heterotic theories are summarized here. The details of the

construction are in the bulk of the paper.

The two lines of theories correspond to wrapped NS5-branes of the two kinds from

the ten-dimensional point of view. The theory labelled by d admits a Poincare(d − 1, 1)

symmetry for d > 0. The details regarding the chosen conjugacy classes are provided in

the bulk of the paper. The Kaluza-Klein gauge fields6 which are denoted here by barred

currents arise from the supersymmetric right movers in the compact directions.

1.2 The various theories in the smooth cigar background

From the worldsheet point of view, the linear dilaton theories above suffer from a strong

coupling singularity. In the type II case referred to earlier, this is resolved by turning on

the N = 2 Liouville operator, or considering its mirror cigar coset SL2(IR)k/U(1) where

the level of the coset is tuned to make the worldsheet theory free of conformal anomalies.

These theories no longer suffer from strong coupling singularities, and the effective tunable

string coupling at the tip of the cigar is a modulus of the theory.

5In this summary, we shall not distinguish between the SO group and the corresponding Spin groups.

The details of which conjugacy classes are chosen are presented in sections 4 and 5.
6These fields are KK modes in the d dimensional theories arising from gravitons with one leg in the

compact space. In the d = 0 theory, both the legs of the graviton would be on the compact direction, and

in fact, there is one such physical discrete state. However, this mode naturally combines with the other

gauge factor to give rise to a larger gauge group. One of the entries is left empty to avoid this overcounting.
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Theory d = 6 d = 4 d = 2

E8 × E8 line E8 × E7 E8 × E6 E8 × SO(10)

SO(32) line SO(28) × SU(2) SO(26) × U(1) SO(24) × U(1)

Table 2: Allowed gauge groups in the cigar theories.

In the heterotic theories, one can turn on the same N = (2, 2) deformation [19] – this

ensures that the CFT is a well-defined string background at tree level – and consider the

background IRd−1,1 × SL(2)k/U(1). From the point of view of gauge theory in spacetime,

this is equivalent to turning on a certain instanton background which breaks some of the

gauge symmetry of the singular theory. We find then that allowed gauge groups are:

The cigar theory has the same supersymetries and global bosonic symmetries as those

presented in Table 1. The gauge groups from the left movers are smaller, and the right

moving KK gauge fields are absent. The d = 0 case will be discussed in more detail in the

following.

1.3 The moduli and the spacetime interpretation

For large values of k, the heterotic 5-branes can be understood as instantons in the low

energy effective theory. For our cases, since the background has curvatures of order string

scale, the approximation of gravity plus gauge theory describing the closed string physics is

not a priori valid. However, we can try to compute the closed string moduli in the theories,

and ask if the moduli space is that of a known low energy theory. In general, the singular

string theory has many moduli which are lifted in the smooth deformed theory.

In the case of d = 6 however, the smooth theory on the cigar also has surviving moduli.

We shall see that these moduli are precisely those of an instanton in the gauge theory in

transverse space, as in the picture of the wrapped7 5-branes described above. In this case,

the gauge theory lives on IR4 and the ADHM construction provides an explicit construction

of the instantons. A finite size instanton in the gauge groups E8 × E8 and SO(32) breaks

the gauge groups to E8×E7 and SO(28)×SU(2) respectively and breaks the global SO(4)

symmetry to an SU(2).

There are four zero modes of the instanton which are singlets under the gauge groups

corresponding to its size and orientation in the IR4. There are also zero modes charged

under the gauge fields which correspond to the orientation of the instanton in the gauge

group. For the two theories, the charged moduli are doublets under the global SU(2) and

transform as (1,56) and (28,2) of the respective gauge groups [19] . We shall see that

the d = 6 string theory indeed realises these moduli as exactly marginal operators on the

worldsheet.

For the other cases, the wrapped 5-brane picture gives a gauge theory living on a

curved space, and the zero mode mode analysis is more difficult. A preliminary analysis

in the string theory indicates that there are no moduli charged under the surviving gauge

group in the other cases.

7For d=6, the branes are not really wrapped, and are points in the transverse space .
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1.4 Plan of the paper

The rest of the paper is organized as follows. In section 2, we present a quick review of

the type II theories, recalling the features relevant for the heterotic analysis. In section 3,

we present the worldsheet theory for a general d, and present the problem of the heterotic

construction as finding a lattice with specific properties [21] . In section 4 and 5, we present

some details of the two lines of theories in dimensions d = 6, 4, 2, 0, the construction of

modular invariant torus partition functions, the ensuing spectrum, and a discussion of the

gauge and global symmetries for singular and deformed theories. Section 4 also contains a

more detailed discussion of the moduli from the worldsheet point of view, with the d = 4

and d = 6 cases in the E8 × E8 theory treated in particular detail. An appendix collects

all the relevant characters and modular transformation formulas.

2. Quick Review of the non-critical type II theories

Type II superstring theory on backgrounds of the form IRd × (N = 2 linear dilaton)/cigar

have been studied in detail [3] , [2, 4]. We shall quickly present the relevant features of the

type II theories in dimensions d = 6, 4, 2, 0 which shall be used to construct the heterotic

theories. The singular manifolds mentioned in the introduction correspond to K3 and

CY 3, 4, 5-folds respectively.

The worldsheet fields are ρ, θ,Xµ, ψρ, ψθ, ψµ, (µ = 0, 1..d − 1). All the bosons and

fermions are free except for ρ along which the dilaton varies linearly gs = e−
Q
2

ρ; this

induces a background charge and makes its central charge cρ = 1 + 3Q2. By N = 2

supersymmetry on the worldsheet, the radius8 of the coordinate θ is R = 2/Q2. To get a

consistent string background, we add the (b, c, β, γ) ghosts and tune Q2 = 8−d
2 so that the

total central charge vanishes.

2.1 d=6, or singular K3 compactifications

For d = 6, the boson θ is at the free fermion radius and can be written as ψ± = e±iθ.

The three fermions ψ3 ≡ ψθ, ψ± make up an SU(2)1 current algebra. The worldsheet

theory then has Xµ, ψµ, µ = 0, ..5, ρ, ψρ, ψi, i = ±, 3 with a total of ten free fermions.

This description makes it clear that the partition function is closely related to the ten-

dimensional superstring. The type II torus partition function is9:

Z = V8

∫
d2τ

τ2
2

1

τ
5/2
2

1

|η(τ)|10 ×
∣∣∣∣
ϑ4

00(τ)

η4(τ)
− ϑ4

01(τ)

η4(τ)
− ϑ4

10(τ)

η4(τ)

∣∣∣∣
2

(2.1)

In the linear dilaton theory, there is an SU(2)L ×SU(2)R symmetry and there are six-

dimensional (massless) gauge fields in the spectrum for the corresponding currents. Only

a diagonal (global) SU(2) is a true symmetry. This can be understood by the presence of

non-zero correlators in the theory on the coset with non-zero net charge under the broken

8We shall work in conventions where α′ = 2.
9Here, we only count the operators which are non-normalizable near the weak coupling end, that are

the ones local on the worldsheet [22]. We discuss this further later.
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SU(2). In the dual (N = 2 Liouville theory), this is understood by the fact that only the

conserved symmetries commute with the interaction term in the Lagrangian. There are

also 9 scalar massless fields in the 3 × 3 = 1 + 3 + 5 of the diagonal, out of which only

the 1 + 3 are truly marginal at second order in conformal perturbation theory [3] , and

the moduli space is IR4/Z2. These calculations match with the geometric picture of two

NS5-branes separated in the transverse four directions (the coulomb branch).

2.2 d=4, or singular CY3 compactifications

In this case, the boson lives on the self dual radius, R =
√

2, and there are two modular

blocks made up of the SU(2)1 characters and the four fermions remaining in light cone

gauge. We first define:

Z4d
k (τ) =

(
ϑ2

00(τ)

η2(τ)
− eπik ϑ2

01(τ)

η2(τ)

)
ϑk 0(2τ)

η(τ)
− ϑ2

10(τ)

η2(τ)

ϑk+10(2τ)

η(τ)
(2.2)

The type II partition function is

Z = V6

∫
d2τ

τ2
2

1

τ
3/2
2

1

|η(τ)|6
1∑

k=0

∣∣∣Z4d
k (τ)

∣∣∣
2

(2.3)

It can be checked that the characters Z4d
k (τ) have the same modular transformation

properties as those of E7.

The linear dilaton theory has a U(1)×U(1), which is broken to a global U(1) as above.

The conserved and broken U(1) correspond to momentum and winding around the cigar.

2.3 d=2, or singular CY4 compactifications

Here, the boson lives on a circle of radius R = 2/
√

3 and there are three modular blocks

made up this boson and the two remaining fermions. We first define:

Z2d
k (τ) =

ϑ00(τ)ϑ 2k
3

0(3τ)

η2(τ)
− e

2πik
3

ϑ01(τ)ϑ 2k
3

1(3τ)

η2(τ)
−

ϑ10(τ)ϑ1+ 2k
3

0(3τ)

η2(τ)
(2.4)

The type II partition function is the following:

Z = V4

∫
d2τ

τ2
2

1

τ
1/2
2

1

|η(τ)|2
2∑

k=0

∣∣∣Z2d
k (τ)

∣∣∣
2

(2.5)

The characters Z2d
k (τ) have the same modular transformation properties as those of

E6.

The U(1) symmetries are the same as the d = 4 case.

2.4 d=0, or singular CY5 compactifications

In this theory, there are no transverse oscillators, and the only remaining modes are the

momemtum and winding of the boson which lives at the inverse of the free fermion radius

– 6 –
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R = 1. The type II partition function is10

Z = V2

∫
d2τ

τ2
2

∞∑

m,w=−∞
exp

(−π|m − wτ |2
2τ2

)
(2.6)

3. Supersymmetric Heterotic theories

3.1 Construction using lattices

We shall take the right movers to be the same as the type II non-critical superstring. To get

the heterotic string, we replace the left moving fermions and superghosts by a lattice with

the same central charge cL = 11+ d+2
2 = 12+ d

2 . Along with the right moving fermions, and

the left and right moving compact boson θ, we have then lattices of the form Γ13+ d
2
,1+ d

2

which describe the string theory in light cone gauge.11 To get a modular invariant one-loop

amplitude, the condition becomes that Γ13+ d
2
,1+ d

2

is an odd self-dual lattice.

To guarantee spacetime susy, we demand that the right moving partition function is

exactly the same as in the type II string12. Then, the problem of constructing supersym-

metric theories which are modular invariant at one loop reduces to finding a lattice Γ13+ d
2

whose characters transform in exactly the same way as the right movers of type II.13 These

lattices have a 13+ d
2 dimensional branch of moduli space given by SO(13+ d

2 , 1)/SO(13+ d
2)

transformations of the above one.

From the type II analysis, we know that we need to replace the left movers with a

lattice Γ13+ d
2

whose characters transform14 as E5+ d
2

. Under the S modular transformation

(τ → − 1
τ ), they behave the same way as the characters of A 6−d

2

. Assuming that these

theories have a ten-dimensional origin, where the gauge groups can only be E8 × E8 and

SO(32), we can reduce the problem to the following: embed A 6−d
2

in these two groups, and

within the maximal commuting subgroups, find conjugacy classes which have the correct

transformation under T : τ → τ + 1 to match the right movers. In this way, we find the

results in Table 1.

3.2 GSO projection, Supersymmetry

An equivalent way to ensure spacetime supersymmetry is to use a GSO type projection on

the states in the theory for both the left and right movers. For all the theories, we have

made a list of the low lying vertex operators using the GSO projection, in the following two

10In this case, one subtlety is that the Dirac equation in spacetime has to be imposed later by hand.
11We can also use covariant lattices [23] , but since we always have two flat light cone directions for d > 0,

we can always choose this gauge. We remark on the d = 0 case below.
12This has an interpretation as the singular CY/wrapped NS5-brane geometries, but is not necessarily

the only choice. A more general problem is to classify all such lattices which have spacetime susy.
13Note that this problem is different from the problem of genuine compactifications to d dimensions [21]

because the left and right movers of the “internal” lattice are tied together by the dilaton direction.
14This is strictly true for d = 6, 4, 2 because of the subtlety for the d = 0 case mentioned above. However,

it is true for the d = 0 case as well that the lattices follow the same pattern and they transform as the rank

5 group SO(10). Indeed as in [10] , a covariant formulation would treat all the cases on the same footing.

– 7 –
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sections. To do this, one demands locality of the operators with respect to the supercharges

built using the supersymmetric right movers of the string worldsheet. The fields S =

e−
ϕ
2
+i φ

2 and S = e−
ϕ
2
−i φ

2 are each multiplied by spin fields which are spinors of Spin(d)

(for d/2 even these are conjugate spinors and for d/2 odd they are the same spinor).

The algebra obeyed by the supercharges is the minimal15 Poincare superalgebra in

d − 1, 1 dimensions. For d/2 odd or even, one has respectively

{Sα,Sβ} = 2γµ
αβPµ, or {Sα,S β̇} = 2γµ

αβ̇
Pµ. (3.1)

The symmetry generator P θ corresponding to the translation around the cigar is an R

symmetry.

[P θ,Sα] =
1

2
Sα, [P θ,S α̇] = −1

2
S α̇. (3.2)

3.3 Heterotic theories on the cigar

The linear dilaton theories have a strong coupling singularity; in the type II case, these

are resolved by turning on the sine-Liouville operator, or equivalently, by considering the

manifold to be an SL(2)k/U(1) coset. Because of (2, 2) supersymmetry on the worldsheet,

these theories are exact solutions to string equations of motion at gs = 0. In the heterotic

case as well, we shall focus on (2, 2) compactifications which means that we shall turn on

the same types of operators to resolve the strong coupling singularity. This ensures that

the resulting CFT’s are well-defined string backgrounds.

The spectrum and exact symmetries. Not all the symmetries of the singular linear

dilaton theory are those of the smooth cigar theory. The operator that is turned on in

the worldsheet breaks some of the gauge and global symmetries of the singular theory, as

in the type II case. To understand which symmetries remain conserved in the full theory,

one needs to check whether the correlation functions in the coset are invariant under the

transformation under consideration. The duality with the N = 2 Liouville theory gives

an easier method, which is to demand that the symmetry generators commute (have no

simple pole in the OPE) with the N = 2 Liouville winding interaction

δS =

∫
d2z (ψρ − iψθ)e

1

Q
(−ρ+iθ)

(ψ̃ρ + iψ̃θ)e
i
Q

(−eρ−ieθ)
+ c.c. (3.3)

In this manner, we find the gauge fields which carry the conserved symmetries in the

full theory that are presented in Table 2.

It is worth pointing out that our SCFT admits a modulus – the coefficient of the

above interaction – which can be varied without affecting the conformal dimensions of the

operators. This is as in Liouville theory. The point is that one can compute the one-loop

partition function at weak coupling where the potential is highly suppressed and one use

the linear dilaton theory. This is in contrast with compact SCFTs, where on turning on

a modulus, the spectrum changes, and solving the string tree level theory already tells us

about which particles are massless and which gauge symmetries are exact.

15In the type II theories, there were an equal number of supercharges from the left movers.
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The comments in the above paragraph are illustrated better by an example which is

more familiar and is present in the type II and bosonic theories – that of the momentum

and winding “symmetries” on the cigar. The physical spectrum includes massless gauge

fields corresponding to both of these symmetries, but the gauge field carrying winding

charge does not commute with the N = 2 Liouville interaction. In the language of the

dual coset theory, the correlation functions carry non-zero charge under this symmetry.

Another point worth noting is the following. Each oscillatory state of the string can be

interpreted as in flat space as a mode of a field living on the d + 2 dimensional geometry.

One must keep in mind however that the circle is small in string units and it is more natural

to organize the spectrum as fields living in the d + 1 non-compact directions. However,

the supersymmetry group of the theories is d dimensional Poincare superalgebra16 (3.1) ,

(3.2) , and it is more natural to classify the observables as a set of representations of the

d dimensional algebra labeled by a continuous momentum in the dilaton direction. This

applies also for the type II theories. As an example (this is explicitly constructed in the next

section), for d = 4 at the lowest level, there is a vector particle living in five dimensions,

and its supermultiplet contains also fermions and one real boson. This multiplet structure

is that of an off-shell vector multiplet in four dimensions.17

The moduli. The last general comment has to do with the exact moduli of the theory.

These are a little more complicated than the analysis of the symmetries, the reason having

to do with the fact that the moduli or the massless scalars of the d dimensional theory

correspond to string modes that are localized near the tip of the cigar, in other words

normalizable modes. One way to analyze this problem is to include the discrete states and

write a modular invariant partition function. For the type II case, this was done recently

in [24] .

To analyze the problem using an interacting worldsheet Lagrangian, we proceed as

follows. We assume that worldsheet theory is the N = 2 Liouville interaction (3.3) . We

know that this generates at the quantum level at least one other operator, i.e. the cigar

interaction18 δS =
∫

d2zLcigL̃cig where Lcig = (ψρψθ + Q∂θ)e−Qρ. Since the moduli fields

are normalizable, they have a dependence on ρ which look like e(p−Q/2)ρ, p < 0. Even if

we ignore the fact that these operators are non-local and try to take a formal OPE with

the interaction, one generates in general an infinite number of terms which are more and

more normalizable.

We shall defer the algebraic analysis of the discrete states in these models and adopt

the following strategy. Assuming a worldsheet Lagrangian consisting of the N = 2 Liouville

and cigar interactions, we define an operator to be a modulus in spacetime if its OPE with

the above interactions is non-singular. For d = 6, our results for the moduli match the

spacetime interpretation of the near-horizon limit of k = 2 heterotic five-branes as one

16For d = 0, there are no transverse dimensions and one can organize the spectrum as a set of fields on

the cylinder or cigar.
17This might look a little strange from the point of view of four dimensional particle physics, but these

modes are particles in five dimensions, not four.
18Note that this latter operator is always normalizable. The former is a non-normalizable (local) operator

for d = 0, 2, 4.
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instanton19 of the relevant gauge group living in the transverse IR4. For the other values of

d (we shall lay out the details for d = 4 in the next section), we find that there are no moduli

– the potentially massless scalars all have a non-zero OPE with the interactions in a way

that gives mass to the scalars. Based on this, we would expect the relevant codimension four

objects in spacetime, arising from wrapped five-branes on the non-trivial curves mentioned

in the introduction have no zero modes. Because of the wrapping however, the spacetime

setup as instantons on a certain transverse space is not easy to solve.

4. The E8 × E8 line of theories

In this section, we shall work out in detail the aspects of the various theories with the

above gauge group. For one of the cases (d = 4), we present a detailed analysis of the

spectrum, gauge groups in the singular linear dilaton theory and smooth cigar theory, and

moduli. For the other cases, we only list the aspects that are particular to that case. For

the case d = 6 which has extended worldsheet supersymmetry, we present a discussion

of the moduli in more detail – in particular, the matching with the spacetime picture of

E8×E8 instantons. In the next section, we shall do the same for the SO(32) line of theories,

highlighting the new aspects.

The general setup is the following. The worldsheet fields contain as in the type II case,

the left and right moving bosons ρ, θ,Xµ and the (b, c) ghosts. On the supersymmetric

rightmoving side, there are the fermions ψρ, ψθ, ψµ, (µ = 0, 1...d−1) and (β, γ) ghosts. On

the leftmoving side, we have the fermions λ̃i, (i = 1, 2...22 + d) as well as ψ̃ρ, ψ̃θ. Taking

into account the slope of the dilaton ρ, the total central charge on both sides is then zero.

In all the theories in this section, the leftmoving fermions are split into two groups –

λ̃i, i = 1..16 which form one of the E8 factors, and do not interact with the rest, and the

rest of the 6 + d fermions which combine with (ψρ, ψθ), and the compact boson θ to give

the other factor.

4.1 d=4

For the linear dilaton theory, based on the rightmoving part of the type II theory, we look

for a lattice with rank 15 whose characters transform exactly like E7. The E8 lattice has

only one conjugacy class (0), and so the E8 ×E7 lattice has the required properties. It has

two conjugacy classes transforming like E7. The modular invariant partition function20 is

thus given by:

Z = V6

∫
d2τ

τ2
2

1

τ
3/2
2

1

|η(τ)|6
1∑

k=0

(
Z4d

k (τ)
)∗

ZE7
k (τ) (4.1)

To construct the vertex operators, we first construct the building blocks for the gauge

currrents:

E8 gauge current Aαβ : λ̃iλ̃j , (i, j = 1, 2..16); σ̃ ∈ 128 of SO(16).

19Although k = 2, only the relative moduli of two instantons survive in the near horizon limit [19, 20] .
20The characters used here and below are all characters of the corresponding current algebra at level one.

A summary of these is given in the appendix.
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E7 gauge current Aab : λ̃iλ̃j, λ̃iψ̃ρ,θ, ψ̃ρψ̃θ, (i, j = 17, ..26);

j̃± ≡ e±i
√

2eθ, j̃3 ≡ ∂θ̃.

Σ̃e±
i
2
(H̃+

√
2θ̃), Σ̃ ∈ 16 of SO(10)

Σ̃e±
i
2
(H̃−

√
2θ̃), Σ̃ ∈ 16 of SO(10). (4.2)

The SO(16) and SO(10) above rotate the fermions
(
λ̃i, i = 1..16

)
and

(
λ̃i, i = 17..26

)

respectively; σ̃ and (Σ̃, Σ̃) are the spin fields of the corresponding set of fermions.

We can now put together the left and right movers, imposing the BRST condition

coming from the N = 1 gauging of the right movers, along with the GSO condition implied

in the partition function (4.1) . We can then classify the operators as spacetime fields on

the the non-compact part of the space IR4 × ρ. Since there is no translational invariance

along ρ, we classify them by the remaining symmetry which is that of the N = 1 Poincare

superalgebra in d = 4 with the R symmetry of translations around the circle; as well

as the gauge symmetries above. In general, there will be a label p on these operators

corresponding to the profile in the dilaton direction, below we shall restrict to the massless

modes in IR4 which forces p2 = 1
2 . We shall also restrict to the operators obeying the

Seiberg bound, i.e. the non-normalizable branch.

The asymptotic vertex operators for the massless (kµkµ = 0) states are:

Graviton : e−ϕψµ∂XJeikµXµ

E8 gauge field : e−ϕψµAαβeikµXµ

E7 gauge field : e−ϕψµAabeikµXµ

E8 × E7 Adjoint scalar : e−ϕψθ × (as above) µ = 0, 1..3. (4.3)

Note that the states with ψρ excitations in the massless sector have been thrown out

by the BRST constraint.

By acting on the above operators with the supercharges, we can figure out the susy

multiplets. The susy algebra is N = 1 Poincare susy in d = 4, with the U(1) R symmetry

given by the momentum around the cigar. Asymptotically, the supercharges do not depend

on the coordinate ρ. We find that the vector and the one scalar in (4.3) are in a off-shell

vector multiplet of the above algebra. Combined as a vector multiplet in d = 4, the scalar

is in the position of the D-term field for the above vector.

Comment on extended symmetry algebra. In the type II theory in d = 4, in spite

of the fact that the boson lives on a circle of self-dual radius, there was no symmetry

enhancement of the U(1) of the circle to SU(2), since the SU(2) currents were not physical

in the super-linear dilaton theory. In the heterotic case, the left-moving SU(2) currents

from the boson are indeed physical and they are required to complete the gauge group to

E7. In the SO(32) line, this SU(2) is actually seen as a direct product with the rest of the

SO(28) currents, as we shall see in the next section.

Interacting theory. All the above operators (4.3) are present in the partition function

(4.1) of the linear dilaton theory. Since the partition function of the cigar theory which is
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independent of gs can be written in the weak coupling region, the above operators are also

present in the cigar theory. In the coset theory, there are also other modes in the discrete

representations which are not present in the partition function (4.1) .

The massless operators above remain massless at gs = 0 in the interacting theory.

However, as in the type II case, not all the symmetries of the linear dilaton theory carry

over to the cigar, i.e. in the presence of the N = 2 Liouville (winding) interaction:

δS =

∫
d2z(ψρ − iψθ)e

1√
2
(−ρ+iθ)

(ψ̃ρ + iψ̃θ)e
i√
2
(−eρ−ieθ)

+ c.c. (4.4)

The gauge fields which commute with the interaction and thus correspond to conserved

symmetries in the coset theory are (all operators have kµkµ = 0):

E8 gauge field : e−ϕψµAαβeikµXµ
.

E6 gauge field : e−ϕψµλ̃iλ̃jeikµXµ
, (i, j = 17, ..26);

e−ϕψµΣ̃e±
i
2
(H̃+

√
2θ̃)eikµXµ

, Σ̃ ∈ 16 of SO(10);

e−ϕψµ(ψ̃ρψ̃θ −
√

2 ∂θ̃)eikµXµ
. (4.5)

Apart from these gauge fields, we could also have global symmetries which commute

with the interaction. These have both left and right moving components on the worldsheet.

In this case, we only have the momentum U(1) symmetry generated by (e−ϕψθ, ∂θ̃).

Moduli. For the moduli, from the supersymmetric right movers, the only scalar op-

erator which commutes with the interaction are the right moving part of the interac-

tion terms themselves L± = e
±i(H+ i√

2
θ)− 1√

2
ρ

where e±iH = (ψρ ± iψθ), and Lcig =

(ψρψθ +
√

2∂θ)e−
√

2ρ. This fixes the momentum in the ρ direction, and we can then

look for left moving operators to combine with.

Firstly, of course we have the interaction terms themselves which are singlets under all

the gauge groups, the only normalizable one is the cigar interaction

1 of E6 : LcigL̃cig (4.6)

We find that all the other operators have a non-trivial OPE with the interaction terms.

For example, with the rightmover Lcig, one can combine leftmovers to get the following list

of scalars in the (anti)fundamental of E6. We write them below in the representations of

SO(10) generated by the rotations of the fermions (λa, a = 17...26):

Lcig λ̃a(ψ̃ρ + iψ̃θ)e
−
√

2eρ, 10 of SO(10);

27 of E6 : Lcig Σ̃e−
i
2
( eH+

√
2eθ)−

√
2eρ, 16 of SO(10);

Lcig ei
√

2eθ−
√

2eρ, 1 of SO(10). (4.7)

and their complex conjugates which give 27. The residue in the pole of their OPE’s

with the cigar interaction term is proportional to themselves, implying a Yukawa type

coupling; in other words, for non-zero value of the cigar interaction, the scalars are massive.

The spacetime interpretation of the background according to [2] is a codimension four

object in the E8 ×E8 gauge theory on the space transverse to z2
1 + z2

2 = 0 embedded inC3.

The analysis above implies that there are no zero modes of this object.
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4.2 d=6

Since the boson θ is at the free fermion radius R = 2, we can fermionize it as e±iθ =
1√
2
(ψ1 ± iψ2) ≡ ψ±. The fermion content of both the left and right movers is thus the

same as the ten dimensional heterotic string and we get an E8 × E8 gauge field. There is

also an SU(2) current algebra from the right movers. The partition function21 is:

Z = V8

∫
d2τ

τ2
2

1

τ
5/2
2

1

|η(τ)|10 ×
(

ϑ4
00(τ)

η4(τ)
− ϑ4

01(τ)

η4(τ)
− ϑ4

10(τ)

η4(τ)

)∗ (
ZE8(τ)

)
. (4.8)

The interaction term in this case is a little special, as seen in the type II theory [3] .

The free theory has a SU(2)2 current algebra which rotates the three fermions ψi on the left

and the right. The group SO(4) = SU(2)L × SU(2)R is a symmetry of the two coincident

NS5-branes. The rightmoving and leftmoving cigar and N = 2 Liouville interactions

fall into a triplet of the respective SU(2)2 current algebra. The full interaction is then

a singlet under a chosen SU(2) subgroup of the SO(4) and transforms under the three

broken generators. The choice of this SU(2) (which represents the remaining symmetry of

two parallel separated five-branes) plus the overall scale of separation represent the four

exact moduli.

Now, let’s say that the conserved SU(2)cons is the diagonal one22. After the above

fermionization, the N = 2 Livouille and cigar interactions can be expressed in an SU(2)2
covariant manner in terms of the fermion bilinears jie

−ρ ≡ (ψρψi − 1
2εijkψjψk)e

−ρ. The

interaction is then given by:

δS =

∫
d2zjij̃ie

−ρ−eρ. (4.9)

In the heterotic theory, after turning on the above interaction, the E8 × E8 gauge

currents split naturally into E8 × E7 which commute with the interaction, an SU(2)L
under which the interaction terms fall into a triplet, and the rest which have fundamental

charge under at least one of the two. This E8 × E7 × SU(2)L is a maximally commuting

subgroup of E8 × E8.

The SU(2)L currents mentioned above under which the interaction terms are a triplet

are simply the j̃i of above23. The gauge fields which commute with the interaction are

built out of the following currents (All the corresponding operators have kµkµ = 0).

E8 gauge currentsAαβ : λ̃iλ̃j , i, j = 1, 2..16; σ̃ ∈ 128 of SO(16).

E7 gauge currentsAab : λ̃iλ̃j , i, j = 17...28,

Σ̃τ̃ ; Σ̃ ∈ 32 of SO(12), τ̃ ∈ 2 of SO(4).

(ψ̃ρψ̃i + 1
2εijkψ̃jψ̃k), i = 1, 2, 3. (4.10)

21Note that the partition function is not exactly the same as the ten dimensional E8 × E8 theory, e.g.

the number of η functions are different.
22It is not difficult to write down the interaction for a general conserved SU(2) subgroup of the SO(4)

[3] .
23Note that these currents are not physical in the type II theory, in which the SU(2)L is generated by

1

2
εijk

eψj
eψk.
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The SO(16), SO(12) and the SO(4) above rotate the fermions
(
λ̃i, i = 1..16

)
, (λ̃i,

i = 17..28) and
(
ψ̃ρ, ψi

)
respectively; σ̃, Σ̃ and τ̃ are the spin fields of the corresponding

set of fermions.

The Moduli. The currents of E8 × E8 which do not commute with the interaction are

given below. Under the E8 × E7 × SU(2)L, these fall into a (1,56,2) which we call Mα

(suppressing the E8 × E7 index), and a (1,1,3).

(1,56,2) : Σ̃ τ̃ , Σ̃ ∈ 32 of SO(12), τ̃ ∈ 2 of SO(4);

λ̃a[(ψρ ± iψθ) + (ψ1 ± iψ2)], a = 17..28;

λ̃a[(ψρ ± iψθ) − (ψ1 ± iψ2)], a = 17..28.

(1,1,3) : j̃i, i = 1, 2, 3. (4.11)

Now, the last step to find out which are the true moduli is to tensor the left and right

movers together to produce scalars in spacetime and ask which operators commute with

the interaction. The conserved symmetries of the theory are E8 ×E7 gauge symmetry and

the diagonal part of the product of the above SU(2)L and the SU(2)R coming from the

supersymmetric side.

The fields which are moduli in the free theory are got by combining the currents

Mαe−eρ and j̃ie−eρ using the above leftmovers, and the three worldsheet N = 2 invariant

rightmovers jie−ρ.

The problem of which are the true moduli in the interacting theory that are neutral

under the gauge group has been solved already because the answer is the same as in the

type II case [3] . The interaction jij̃je−ρ−eρ are in a 3 × 3 of the SU(2)L × SU(2)R and

under the diagonal conserved SU(2)cons, they fall into a 1 + 3 + 5. In second order of

conformal perturbation theory, only the 1 + 3 are true moduli.

The fields which are charged as the fundamental under E7, transform under SU(2)L ×
SU(2)R as 2× 3 and under the diagonal conserved SU(2)cons, they fall into 2 + 4. Among

these six fields, it can be checked that the OPE of the 4 with the interaction (4.9) gives a

Yukawa coupling effectively making those fields massive whereas the 2 commute with the

interaction and remain marginal.

The final result is that the true symmetries of the theory is E8×E7 gauge and SU(2)cons

global. The true moduli transform under these groups as (1,1,1)+ (1,1,3)+ (1,56,2).

As mentioned in the introduction, these fields have the interpretation as being the zero

modes of a finite size instanton in the near horizon limit of k = 2 heterotic 5-branes.

4.3 d=2

The characters of E8 × E6 transform like those of E6 and has the required rank 14. The

partition function is given by:

Z = V4

∫
d2τ

τ2
2

1

τ
1/2
2

1

|η(τ)|2
2∑

k=0

(
Z2d

k (τ)
)∗

ZE6
k (τ). (4.12)
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The gauge fields which commute with the interaction and thus correspond to conserved

symmetries in the coset theory are (all operators have kµkµ = 0):

E8 gauge currents : Aαβ : λ̃iλ̃j , i, j = 1, 2..16; σ̃ ∈ 128 of SO(16).

SO(10) gauge currents :Aab : λ̃iλ̃j, i, j = 17, ..24;

Σ̃e±
i
2
(H̃+

√
3θ̃), Σ̃ ∈ 8 of SO(8);

(ψ̃ρψ̃θ −
√

3 ∂θ̃). (4.13)

The SO(16) and SO(8) above rotate the fermions
(
λ̃i, i = 1..16

)
and

(
λ̃i, i = 17..24

)

respectively; σ̃ and Σ̃ are the spin fields of the corresponding set of fermions. There is a

U(1) global symmetry of translations around the cigar.

4.4 d=0

The linear dilaton theory is one of the theories explored in [10] . This linear dilaton theory

has a gauge group E8×SO(10) where the gauge fields live in two dimensions. There is also

a U(1) global symmetry of translations around the cigar. This theory is special because

it does not have any directions transverse to the cigar. The currents which make up the

gauge field in the linear dilaton theory are:

E8 gauge current Aαβ : λ̃iλ̃j, (i, j = 1, 2..16); σ̃ ∈ 128 of SO(16).

SO(10) gauge current Aab : λ̃iλ̃j , λ̃iψ̃ρ,θ, ψ̃ρψ̃θ, (i, j = 17, ..22);

Σ̃e±
i
2
(H̃+θ̃), Σ̃ ∈ 4 of SO(6),

Σ̃e±
i
2
(H̃−θ̃), Σ̃ ∈ 4 of SO(6);

∂θ̃. (4.14)

The SO(6) referred to above is the one rotating the fermions λi, (i = 17..22).

The above gauge currents can be tensored with rightmoving excitations of the type

e−ϕψθ to give a gauge field on the cylinder. There are also other dimension (1, 1) opera-

tors of the form λie±iθ, but these are the lowest elements of a tower of states which are

interpreted as scalars propagating on the cylinder [10] . Note also that the mode e−ϕψθ∂θ̃

which is a graviton on the cylinder, was interpreted as the Kaluza-Klein gauge field on flat

space in the higher dimensional theories.

In the interacting theory, none of the gauge field modes commute with the interaction

because of the rightmoving excitation inside the cylinder like e−ϕψθ. In this case, an

algebraic approach to the problem of finding the correct gauge symmetries using the exact

SL(2, IR)/U(1) SCFT is probably necessary, as mentioned in section 3.

5. The SO(32) line of theories

In this section, we shall repeat the analysis of the previous section for the line of theories

descending from the gauge group SO(32). We will be much more brief, since the analysis

closely follows the previous section.
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The general setup is as before. The leftmoving lattice consists of the fermions λi,

i = 1, 2...22 + d along with (ψρ, ψθ), and the compact boson θ. In the theories to follow,

the GSO projection is such that all the fermions λi transform into each other as well as

(ψρ, ψθ, θ).

5.1 d=4

We need to find a lattice of rank 15 with two characters which transform in the same way

as those of E7. Based on the previous experience, we embed SU(2) in SO(32), and the

maximal commuting subgroup is SO(28) × SU(2). It can be checked that24

Z
SO(28)×SU(2)
0 = χ0(τ)χA1

0 (τ) + χS(τ)χA1
1 (τ),

Z
SO(28)×SU(2)
1 = χV (τ)χA1

1 (τ) + χC(τ)χA1
0 (τ). (5.1)

transform like the two characters of E7. The full partition function is then:

Z = V6

∫
d2τ

τ2
2

1

τ
3/2
2

1

|η(τ)|6
1∑

k=0

(
Z4d

k (τ)
)∗

Z
SO(28)×SU(2)
k (τ) (5.2)

In the low energy spectrum, the graviton will be of course present, and the gauge fields

are:

SO(28) gauge current Aab : λ̃iλ̃j , λ̃iψ̃ρ,θ, ψ̃ρψ̃θ, (i, j = 1, ..26);

SU(2) gauge current Aαβ : j̃± ≡ e±i
√

2θ̃, j̃3 ≡ ∂θ̃. (5.3)

Note here that the modes involving the spinor conjugacy classes have at least dimension

two, and so will not be present in the massless spectrum.

In the interacting theory, the gauge fields that commute with the interaction are the

SO(26) × U(1) gauge fields:

SO(26) gauge current Aab : λ̃aλ̃b, (a, b = 1, ..26);

U(1) gauge current A : (ψ̃ρψ̃θ −
√

2 ∂θ̃). (5.4)

5.2 d=6

In this case, we can fermionize θ as before to have 32 free fermions λi (i = 1..28), and

ψρ, ψi (i = 1..3). In the linear dilaton theory, we have the ten-dimensional gauge group

SO(32) arising from the rotation of the 32 free fermions, and an SU(2) current algebra

from the right movers. The partition function is:

ZT2 = V8

∫
d2τ

τ2
2

1

τ
5/2
2

1

|η(τ)|10 ×
(

ϑ4
00(τ)

η4(τ)
− ϑ4

01(τ)

η4(τ)
− ϑ4

10(τ)

η4(τ)

)∗ (
ZSO(32)(τ)

)
. (5.5)

where

ZSO(32)(τ) = χ
SO(32)
0 + χ

SO(32)
S . (5.6)

24The notations of the various characters of SU(2) are standard and are collected in the appendix.
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In the interacting theory, there is a global SU(2) symmetry and the gauge currents

which are conserved are:

SO(28) gauge current Aab : λ̃aλ̃b, (a, b = 1, ..28);

SU(2) gauge current Aαβ : (ψ̃ρψ̃i +
1

2
εijkψ̃jψ̃k), (i = 1..3). (5.7)

The analysis of the moduli is also similar to the E8×E8 case and the exactly marginal

operators in the interacting theory fall into a (1,1,1) + (1,1,3) + (28,2,2) under (SO(28)

×SU(2))gauge × SU(2)global.

5.3 d=2

We need a lattice with three characters which transform in the same way as those of E6.

It can be checked that the following three classes of SO(26) × U(1)

Z
SO(26)×U(1)
k (τ) =

ϑ13
00(τ)

η13(τ)

ϑ 2k
3

0(3τ)

η(τ)
+ e

2πik
3

ϑ13
01(τ)

η13(τ)

ϑ 2k
3

1(3τ)

η(τ)
+

ϑ13
10(τ)

η13(τ)

ϑ1+ 2k
3

0(3τ)

η(τ)
(5.8)

transform like the three characters of E6. The full partition function is then:

Z = V4

∫
d2τ

τ2
2

1

τ
1/2
2

1

|η(τ)|4
2∑

k=0

(
Z2d

k (τ)
)∗

Z
SO(26)×U(1)
k (τ) (5.9)

In the interacting theory, there is a global U(1) symmetry and the gauge currents

which are conserved are:

SO(24) gauge current Aab : λ̃aλ̃b, (a, b = 1, ..24);

U(1) gauge current A : (ψ̃ρψ̃θ −
√

3 ∂θ̃). (5.10)

5.4 d=0

The linear dilaton theory is also one of the theories explored in [10] . This linear dilaton

theory has a gauge group SO(24) × U(1) with gauge fields living in two dimensions. The

SO(24) part arises from that many free fermions, and the U(1) part arises from the discrete

state e−ϕψθ∂θ̃. As before, we have classified this as a gauge field instead of a graviton.

However, in this case, in contrast to the E8 line, there are no other massless modes to

enhance the symmetry and the gauge group remains a product of the two.

There is a U(1) global symmetry of translations around the cigar as in the other cases.

For the same reason as in the E8 line, the analysis of the interacting theory would be better

done using the exact coset algebra.
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A. Building Block Characters and their Modular transformations

The definition of the ϑ and η functions are:

η(τ) = q
1

24

∞∏

n=1

(1 − qn)

ϑab(τ) = q
a
8 eπiab/2

∞∏

n=1

(1 − qn)(1 + eπibqn−(1−a)/2)(1 + e−πibqn−(1+a)/2)

=
∑

n∈Z

exp

[
2πi

(
1

2
(n +

a

2
)2τ + (n +

a

2
)
b

2

)]
(A.1)

We collect below the characters and their modular transformation formulas of the various

current algebras used in the main text. They are all characters of current algebras at level

one.

A.1 SU(2)1 characters

The characters used in the text in the d = 4 theories are those of a boson at the SU(2)

radius. There are two of them:

Scalar : χA1
0 (τ) = ϑ00(2τ)

η(τ) ,

Fundamental : χA1
1 (τ) = ϑ10(2τ)

η(τ) . (A.2)

Their modular transformation properties are:

χk(τ + 1) = ei(k
2
− 1

12
)πχk(τ)

χk(−
1

τ
) =

∑
l

1√
2
eiπklχl(τ) (A.3)

A.2 SO(2n)1 characters

The characters of the four conjugacy classes of the SO(2n) algebra are:

χ0(τ) = 1
2

1
ηn(τ) (ϑn

00(τ) + ϑn
01(τ))

χV (τ) = 1
2

1
ηn(τ) (ϑn

00(τ) − ϑn
01(τ))

χS(τ) = 1
2

1
ηn(τ) (ϑn

10(τ) + inϑn
11(τ))

χC(τ) = 1
2

1
ηn(τ) (ϑn

10(τ) − inϑn
11(τ)) (A.4)

The T transformation is

χ0(τ + 1) = e−
inπ
12 χ0(τ)

χV (τ + 1) = −e−
inπ
12 χV (τ)

χS(τ + 1) = e
inπ
6 χS(τ)

χC(τ + 1) = e
inπ
6 χC(τ) (A.5)
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The S transformation matrx is:



χ0

χV

χS

χT




(−1

τ
) =




1 1 11

1 1 −1 − 1

1 −1 e
inπ
2 − e

inπ
2

1 −1 −e
inπ
2 e

inπ
2







χ0

χV

χS

χT




(τ) (A.6)

A.3 En characters

The E8 character is:

ZE8(τ) =
ϑ8

00(τ)

η8(τ)
+

ϑ8
01(τ)

η8(τ)
+

ϑ8
10(τ)

η8(τ)
. (A.7)

and is a singlet under modular transformations.

The E7 characters are (k = 0, 1):

ZE7
k (τ) =

(
ϑ6

00(τ)

η6(τ)
+ eπik ϑ6

01(τ)

η6(τ)

)
ϑk 0(2τ)

η(τ)
+

ϑ6
10(τ)

η6(τ)

ϑk+10(2τ)

η(τ)
(A.8)

and transform as

χk(τ + 1) = ei( 3

4
− k

2
)πχk(τ)

χk(−
1

τ
) =

∑
l

1√
2
eiπklχl(τ) (A.9)

The E6 characters are (k = 0, 1, 2):

ZE6
k (τ) =

ϑ5
00(τ)ϑ 2k

3
0(3τ)

η6(τ)
+ e

2πik
3

ϑ5
01(τ)ϑ 2k

3
1(3τ)

η6(τ)
+

ϑ5
10(τ)ϑ1+ 2k

3
0(3τ)

η6(τ)
(A.10)

and transform as

χk(τ + 1) = ei(k2

3
− 1

2
)πχk(τ)

χk(−
1

τ
) =

∑
l

1√
2
eiπklχl(τ) (A.11)
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